Changes in Brain Network Organization in Children and Adolescents with Sports Related Concussion: 1 Year Follow Up
Munjal V.1, Porter S.2, Virji-Babul N. 3, 4
1Department of Integrated Science, University of British Columbia, Vancouver, BC, Canada;
2Graduate Program in Rehabilitation Science, University of British Columbia, Vancouver, BC, Canada; 3Dept. Of Physical Therapy, 4Djavad Mowafiagn Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada

OBJECTIVES
1. To evaluate changes in resting state functional brain networks in individuals with sports related concussion using graph theory over a 1 year time span.
2. To evaluate whether children and adolescents differ in their pattern of recovery during this time frame.

METHODS
Participants:
15 concussed adolescent athletes participated in the study (ages: 9-19, average age 12.93).

Control groups:
• First time point contains 16 athletes (ages: 9-19, average age 12.54)
• Final time point contains two groups:
 1. Control +1 year: a 1-year follow up with the above control participants (n=5)
 2. Baseline +1 year: the baseline resting state EEG of a different group of healthy adolescents that is one year older than the initial time point of the concussed group (n=13, ages: 10-20, average age: 13.69).

Electroencephalography (EEG) protocol:
Resting state EEG data was collected for both concussed and control samples for 5 minutes (with eyes closed) using a 64-channel Hydrogel Geodesic SensorNets (EGI, Eugene, OR).

RESULTS

Changes in Clustering Coefficient and Betweenness at different time points:

Average Number of Symptoms and Severity of Symptoms decreased at 1 month after concussion:

Trajectory of recovery in athletes with single concussion is different from those with multiple concussion in F10:

Trajectory of recovery in children (ages 9-13) and adolescents (ages 14-19):

SCAT-3 Assessment:
Total number of symptoms and symptom severity score were obtained from the Sport Concussion Assessment Tool (SCAT).

CONCLUSIONS
• Network analysis shows significant changes in connectivity in different regions following a concussion. Re-organization of the functional network is evident from 1 week post-concussion to 1 year post-concussion.
• Adolescents with multiple concussions are slower to recover compared to adolescents with a single concussion in the (R)-PFC.
• Adolescents (14-19 y/o) appear to have larger changes in connectivity in comparison with the children in the (L) frontal regions.
• Symptoms and Symptom Severity Scores decrease from 1 month post-concussion.

REFERENCES

Graph Theory image by: Angela Muller

Betweenness centrality: The fraction of all shortest paths in the network that contain a given node. Nodes with high betweenness centrality participate in a large number of shortest paths.

Clustering coefficient: The fraction of triangles around a node and is equivalent to the fraction of node’s neighbors that are neighbors of each other.

Average Number of Symptoms and Severity of Symptoms decreased at 1 month after concussion:

* Significant difference between 1 month and 3 months and 3 months and 12 months time points. CC in Fpz was significantly lower at the 3 month and increased by 12 months post injury.

* Significant difference between 1 week post-concussion and control group. Betweenness values in F10 were significantly higher 1 week post injury.

* Significant difference between the two groups at 3 months

* Significant difference between the two groups at 1 month. Betweenness at F9 was significantly lower in the older group.